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ABSTRACT

(

-This thesis presents an analysis of stochastic duels in--

volving two opposing weapon systems with constant rates of

fire. The duel was developed as a stationary Markov chain

with stochastic matrices of transition probabilities con-

structed f:com the single shot kill probabilities of the

weapon systems. A comparison was made of the presented

Markov chain analysis results with results from other a6-

cepted conditional probability methods. As expected, this

comparison established the validity of the Markov chain anal-

ysis and indicated advantages of the Markov chain approach in

analysis of discrete process stochastic duels. The analysis

was then extended to the two versus one duel where the three

weapon systems were assumed to have fixel rates of fire.
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L I., INTRODUCTION

A. BACKGROUND

The theory -of stochar.ic duels has been developed in

order to evaluate the probability of a weapon system sur-

viving an engagement with anothe.. weapon system. The effect

of weapon system parameters, such as single shot kill proba.-

bilities, rate of fire, and tactical (time) advantage can

be determined in the analysis of these duels.

Joseph J. Schoderbeck (1962) and TrevorWilliams and

C. J. Ancker, Jr. (1963) developed the basic theory of the

stochastic duel and the "fundamental duel" was defined as

follows:

1. Two comb Lants, A and B, fired at each other until

one was killed.

2. The time between rounds fired was either a constant

or a random variable of known but different density function

for each combatant.

3. Each combatant had a different known but fixed single

shot kill probability.

4. The duel began with each combatant having unlimited

ammunition supplies.

5. Both combatants had unlimited time in which to score

a kill.

6. A tactical -(time) advantage in firing the first shot

was assigned to one of the combatants.
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Since the first development of stochastic duel theory in

1962, many extensions to the theory have evolved. Analysis

of weapon system duels constrained by ammunition limits, time

limits, or varying single shot kill probabilities has been

accomplished. Also, distributions of ithe time to kill and of

the number of rounds fired have been determiopd. In addition

two-versus-one duels and two-versus-two duels have been de-

veloped. As more combatants participate in the duel, it was

shown that the results were in keeping with Lanchester models.

The objective of this thesis was to analyze the "funda-

mental duel" involving fixed time between firings, using

stationary Markov chains. As expected the Markov process

analysis was shown to be equivalent to the conditional proba-

bility methods. But in the Markov analysis of the stochastic

duel, there existed advantages over other analysis methods

that are indicated in Section Ii. Finally, the Markov anal.-

ysis was extended to the two-versus-one duel where all three

weapon systems were assumed to have fixed rates of fire.

B. PREVIOUSLY DEVELOPED ANALYSIS

Stochastic duels have been analyzed utilizing conditional

probability methods. Schoderbeck [Ref. 1] was first respons-

ible kor the analysis of the fundamental duel involving fixed

time between firings. A summary of his analysis is presented

below.

A (friendly force) and B (enemy force) each possessed a

single weapon system with single shot kill probabilities pA

and PB respectively.
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Lot a = time between A's firings.

b = time between B's firings.

It was assumed that at time, t=O, A fired his first shot

at B and that sometime ~ler, T, B returned fire. Also, it

was assumed that a=b, that T<.a, and that each firing was an

independent event. Then the firing sequence looked like that

depicted in Fig. 1.

A -- X- X X X .X

time<T+ *b+
B -X X--X

t=O

Figure 1.- Firing Sequence of A and 3.

Let Pr[A(tO) 0 = Prob[A was alive and B was dead

at time t=t0] and

Pr[A(o)] t [A (t 0.

Considered first was t:.- interval a<t 0 <a+T. Within this

interval there was the possibility that

a) A fired exactly two times.

b) B fired exactly one time.

Thus A was alive and B was dead if and only if

a) B was killed on A's first hot (so did not fire

a shot), or

b) B missed with his one shot and was killed by A's

second shot.

But, Pr[B was killed on A's first shot] =PA

Pr[B missed with his first shot and was killed with

A's second shot] = (-p A ) (1-PB)p A  q AqBP A
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and thus, Pr[A(to ) ] pA+qAqBPA for a<t °<a + T.

Then considered was the interval a+T<t <2a+T. In this

interval there was the possibility that

a) A fired exactly three shots.

b) B fired exactly two shots.

And here A was alive and B was dead if and only if

a) B did not fire at all (killed by A's first shot),

or b) B fired once, missed, and was killed by A's second

shot, or

c) B fired twice, missed twice, and was killed by A's

third shot.

But, Pr[B dd not fire at all] = A

Pr[B fired once, missed, and was killed by A's second shot]

=(l-pA ) (1-q B)P A  = q AqBPA

Pr[B fired twice, missed twice, and was killed by A's
2 2

third shot] q 2 2 ~thir sho] =(l-p A ) (l-p B) (l-p A ) (1-PB) PA  
=  AqBPA

Hence, Pr[A(t 0 pAqAqBPA+qA2qB2PA for a+T<t <2a+T

By induction then for the interval (n-l)a+T<t0 <na+T

Pr[( ot 0] = pAPA(q AqB)+pA(qAqB)2+. "+PA(qAqB ) n

1-7(qAqB )n 1
PA l-q (I-)

an P[(-] lim - -~ t)1 lim 1-(q AqB )n

and Pr[A(O)] = t PrIA(t) Pq

PA
= -- A B  (1-2)
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Since PA > 0 and PB > 0 implied qA<l and and

lim n =0
fl-co

Ancker and Williams [Ref. 2] developed a method for anal-

yzing the fundamental duel with fixed firing rates, whe:re

a~b but T=O. A summary of their analysis is presented below.

The ratio a was assumed to be a rational number and if

a and b contained a common factor, this ratio was reduced to

a/3 where a and 0 were relatively prime integers.

Let n = the largest number of times 8 was contained

in a.

Let r = the remainder when $ was divided into a, then

a=no+r.

Let P(A) = Pr(A won the duel) = Pr(A was alive, B was

dead). Then A won on the jth shot if he missed B on his first

j-1 shots and had hit on his jth round, while B missed with

his first k rounds where k=[j(a/0)] and

[X] = largest integer less than or equal to X.

Then the probability that A won the duel was

M J-l k
P(A) = j q B

j=1

=PA lq AJ1-lq BJn+[j( r/0)]

PA j ((j+1)a/ J (1-3)

l-q~qB j=O
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-C. APPLICATIONS OF STOCIhASTIC DUELS

As analytical formulations of combat operations, )stochas.-

tic duels are of great value in providing insight for the

design of new weapon systems in advanced time frames.

Stochastic duels lend themselves easily to parametric anal-

ysis. By varying parameters such as single shot kill proba.-

bilities or firing rates, it is possible using this aaalysis

to determine tradeoffs between volume of fire versus accuracy

of fire.

The military can apply the analysis of stochastic duels

to missile sites, artillery, torpedoes, and most other weapon

systems. Using realistic parameters, the survival proba-

bilities can be determined in engagements with enemy weapon

systems.

Analysis of duels involving fixed times between firings

can also be compared with analysis of duels involving random-

times between firings, using the same parameter values. This

comparison could yield useful information concerning the

circumstances where a fixed rate of fire was more effective

than a variable rate of fire.

Section II contains the presentation of the stationary

Markov chain analysis of the fixed rate of fire stochastic

duel. This method was verified also in Section II by com-

paring results with conditional probability analysis results

which were presented in this Section. Examples of Markov

analysis of some duels completed Section II.
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Section III presented an extension of the analysis to

the two-versus-one duel, including an example.

The conclusions reached after the analysis, and recom-

mendations for further study are contained in Section IV.

10
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I. STOCHASTIC DUEL -FIXED RATES OF FIRE

A. DEVELOPMENT OF THE MARKOV CHAIN MODEL

A and B represented two combatants, each possessing one

weapon system. The weapon systems' respective single shot

kill probabilities were PA and PB' Further, it was assumed

that both A and B fired at a fixed rate so that a and b

represented the respective times between firings (in seconds)

of A and B. Then,

XA 60 = A's rate of fire (shots/min.)
a

XB 60 = B's rate of fire (shots/min.)

It was assumed also that both a and b were rational numbers

and that A had an arbitrary tactical time advantage, T (sec-

onds). Then:

A fired his first shot at time, t=O, and

B fired his first shot at time, t=T.

A, then, fired his j*th shot at time

tAj* = a(j*-l) (11-l)

and B fired his kth shot at time

tBk T+b(k-i) (11-2)

illustrated in Fig. 2.
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'- a+
A .X- X X -X .Xt

+ T + b t
B X -X -X------X t

t=o

Figure 2. Time Relation Between A and B's Firings

At any time in the process, the duel was in one of four

possible states:

STATE 1: A was alive; B was alive

STATE 2-: -A was alive; B was dead

STATE 3: A was dead; B was alive

STATE 4: A was dead; B was dead

It was noted that STATE 4 occurred only if A and B fired

simultaneously. Whenever A or B (or both) fired, the duel

underwent a transition from one state to another. Transition

matrices associated with the three possible occurrences that

could cause a transition from one state to another are in the

form of the following:

1) A only fired

q A PA 0 0

0 1 0 0
PA

0 0 1 0

\0, 0 0 1

2) B only fired

q B 0 PB 0

0 1 0 -0PB =
B 0 0 1 0

0 0 0 1



3) A and B fired simultaneously

qAqB PAqB qAPB PAPB

0 1 0 0
PA =AB0 0 1 0

0 0 0 1

where qA = -PA and qB =-PB

The initial state vector at the beginning of the duel was

=(1,0,0,0) since the duel was always in STATE 1 (A and B

both alive) at the outset. After m transitions, however,

the state vector was represented by
= P.'PIP2' "P

Pm 01 ... *m

where Pii=l,2,...,m was PA' RB' or PAB depending on the fir-

ing sequence. This firing sequence was in turn dependent

upon T, 'A, and XB.

To compute FMo' the number of times A fired in the period

[0,T] first had to be determined. This was done as follows:

Set tAj* - tB1 , or

a(j*-l) - T , and solved for j*

j, =T + 1 and if [j*] indicated the greatest
a

integer less than j* , then j [j*] + 1] repre-a

sented the number of times A fired in the period (0,T]. Then,

F~ OP m for M<i
oA

Pm  = (11-3)

S o 'PA3"P +1 P +2. . OP ro for j<m

where Pi' i = j + 1, j + 2,..., m was AB or PAB

13



depending on firing sequence derived from XA and X . Also
A Bs

beginning with Pj+1 the sequences of matrices were periodic

as shown below:

A fired his (j+l)st shot at time, t>T

B fired his 1st shot at time t=T

The time between B's 1st shot and A's (j+l)st shot was

tArj+1 - tBl = aj - T (11-4)

If T represented the period in seconds of the firing sequence

then the difference in time between the shot fired by A at

time tA, j+1 + nT and the shot fired by B at time

tBl + nT , n=l,2,..., equaled the time interval of Eq. 11-4.

This was proven by the following method:

a 1  11
lA = a2 and XB = where a,, a2 , b I , and b 2 were

integers since a and b were assumed to be rational numbers.

Let L = lowest common multiple (L.C.M.) of a2 and b 2

L = L.C.M. (a2 ,b2 )

Then E_ and L were both integers.

2A 2

L
LXAB b= (-

2

Let L* = L.C.M. (LXA, LAB)

Then t = 6 (seconds) was the period of the firing

A T
sequence. A, then, fired t( 4) shots in T seconds and

B fired T(AB) shots in T seconds.

14



Let nA number of the shot A fired at time

tA, j+1 + nT and nB = number of the shot B fired at time

t B+nT •

XA
n,,= j + 1 + n,(e)

lB
nB = 1 + {nT(W) for n =1,2,.-.

60 XA 60.
tA,nA a(nA-l) = X- {j+nT (- + T

A XA

60 XB
t = T + b(nB )= T + {nT()} =T + nT
B, nB B

60. 60.
so that tB,nB_- tAtn =A- + nT - (T+nT) = 2A -T a T

= tA,j+l - tB1

In a cycle then the total number of shots fired, N, was rep-

XA A B AA L*resented by N = T(d) + T(fB) but T( L* and

LXB
(6 =L*L* 1 1

-r( B * so that N = L-- ( I+ ) 1

.A B A

If N* represented the maximum number of matrices per cycle,

S L* L*then, N, ( - f type PA x 'of type B) if there

(N X"B of ty e A'

was no simultaneous firing

L* L*
= qN-i, (( -1) of type (A' 1) of type PB

B A

and 1 of type PAB ) if there was a simulta-

neous firing.

15



The state of the duel after n transition cycles (instead

of m transitions), then, was written as:

Pj+n = P% 'PA3  (Pj+ jPj+ 2 "'''Pj+m) n

It was still necessary to determine if Pj+i for i = 1,2,-..,m

was a PA'PB or PAB matrix. This was determined as follows:

In the first of the n cycles A fired his (j+l)st, (j+2)nd,

.. ,(j + __)th shots while B fired his 1st, 2nd,...,
.~ B*L* th

(L--) shots and the time that each of these shots occurred
LXA

was determined from Eqs. II-1 and 11-2.

After ordering the matrices in the cycle let P* = product

of these m matrices (m-i if there were simultaneous firings in

the sequence), i.e., P* = (P j+Pj+2....Pj+m Also let

v . But since

PA 0 0 A ~ Aij TA1q

PA = 0 1 0 0 then PAj  0 1 3 0

0 0 1 0 t0 0 1 0

0 0 10 0 0 1
o 0 0 0 0 0

So that A* = o.PA3 = (qA3 , P~lA , 0, 0) = (a1i,1 2 ,ct 3 ,C 4)

then P.+n = ,pn = (Pj+n,l' Pj+n,2' Pj+n,3' Pj+n,4) "

For the solution to the duel, the individual terms of Pj+n

wer-e de ermined.

The matrix P* was of the form

16



P1  2  P3  P4

0 1 0 0
P*=

o 0 1 0

o 0 0 1

then

P12  P2 (1+P1 ) P3 (1+p ) P4 (1+pl)

p02 0 1 0 0

o 0 1 o

o 0 0 1

p13 [P2 (1+PI+p2P2)3 ( i+p 1 +p12J P4 (1+Pl+pl2 )

p,3 0 1 0 0

0 0 1 0

0 0 0 1

* '1~ (p ~ 1 i1[ 3 ~pi_}C] -1

0 1 0 0

0 0 1 0

0 0 0 1

It was apparent that the 2nd, 3rd and 4th terms of the first

row of p*n were geometric summations and were expressed as:

n IP n1-p 1 n1-p 1 n1~pn lln -PnPln P2 11 lP P31-P'- 1o P41 U--' L" I

0P~n 0 1 0

0 0 0 1

17



Hence Pj+n was expressed as the following:
J+n = ,~

P.P~
J +n

n Slp 1 n l-p, n 1-p n

0 0 1 0
0 0 0 1 /

A png P2[l- - qA' + PA ,lqAP

1-pnn I

P4 t1-p A).

Since the objective of this analysis was the determination

of the systems! survival probabilities as the number of

transition cycles, n, got large, the results were presented

in the form of Table I. As a quick check, it was easily

seen that that the sum of the state probabilities in the

limit as n-+- was:

i-l j P2+P3+P4
0 + PAi_.ZA + qA -- I

l-qAJ j( -P,

=~ ~ P)~+

= 1 - q A + qA) = 1, as it should. Using the sim-

plified notation where A* (al' (2, a3' 4) then Table II

was derived from Table I.

18



TABLE I

DUEL STATE PROBABILITIES

After n Transition Cycles As n +

Pr (A alive; j n
B alive) A P1

i-l A P2 qA plnP2 J - A3 P2-

Pr (A alive; pA. q A + A 2 P PAijlq A  +-p
B dead) i=-P

Pr (A dad; qA P3 qAj Pl n 3 qAj P3
B alive) 1-p 1  1-P 1  T-P

Pr (A dead; qAj P4 qA Pln P4 qAj P4
B dead) *_P1 lPl -,

TABLE II

DUEL STATE PROBABILITIES

After n Transition Cycles As n +

Pr (A alive; a pln

B alive)

na 1P'2 alPl n P2 a 1 P2Pr (A alive; a -
B dead) 2 p ip 1 ,2 1P

Pr (A dead; alP3  ,ip 1 ,-P3  a1 P3
B alive --pl l-p1

Pr (A dead; a1P4  IPl n P 4  a1 P4
B dead) 1-pl I-Pl

19



B. EQUIVALENCE TO PREVIOUSLY DEVELOPED ANALYSIS

The MARKOV analysis of the Stochastic Duel involving

fixed firing rates was shown to hold for the model developed

by Schoderbeck and outlined in Section I. .In this model, the

times between firings, a and b, were assumed to be equal and

the time advantage of combatant A was assumed to be less than

a.

Given: a = b, T<a P = (1, 0, 0, 0)

Then, XA = and there was no possibility of a simultaneous

firing at any time as the duel proceeded.

q A0 0 qB0 pB0

0 1 0 0 0 1 0 0
PA 0" 0 1 0 PB 0 0 1 0

0 0 0 1 0 0 0 1

T[ + 1] = 1 (since 0<T<a)

A = Po.PA = (q A PA' 0, 0)

L = L.C.M. (a2, b 2 ) = a 2

L* = L.C.M. (LXA, LXB) = LXA

N * 1 1 = 2L* 1 2 JA 2
N L A XB -L ( LXA.*

L* LIkA =
L--7 L I1 shot by A

L* _ LX A- -- b

E7XA  EXA

B fired 1st shot at time tB, = T

A fired 2nd shot at time tA,2 = a

20



Since T<a, cycle was of form DA, so P* was just the product

of the two matrices, PA.PB.

0 1 0 0 0 1 0 0 0 1 0 0

0001 0 0 0 10 0 0 1 0

0 0 1 o 6 0 1 0 0 0 1

and

n P~ [i- (q AqB) n i- (q,,qB)n 0S(qlqB)n p q A qB ]PB[lqAqB ]0

*n0 1 0 0
0 ol

0 10

• - n - (q q B3) n
P1+n , ,~ (Aqg)n, PA + PAqAqB [.Y-'q~qB ]

i(q~qB) n 10

The results were best summarized in Table III. Checking the

result obtained by this analysis and that developed in Sec-

tion II, it was seen that the two methods were, equivalent.

But this was not unexpected, as the MRKOV chain analysis

was basically the conditional probability analysis in matrix

notation.

Analog6usly the MARKOV analysis was shown to yield equiv-

alent re'sults of the ANCKER-WILT-,AMS model also summarized

in Section 1, as was expected. The clearest way to illus-

trate this equivalence was by example, since the firing rates

were not specified in the ANCKER-WILLIAMS model, and examples

are presented in the next Section.
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TABLE III

DUEL STATE PROBABILITIES

After n Transition Cycles as n co

Pr (A alive, B alive) qA (qAq B) n 0

Pr (A alive, B dead) pA i -q B }

n
i-( {qqB qAP

Pr A dead, B alive) qAPB AB -qAqB

:Pr (A dead, B dead) 0 0

C. EXAMPLES

In this section three examples are presented illustrating

the use of the MARKOV analysis. The first two examples em-

ployed no time advantage for combatant A to show equivalence

of this analysis to that developed by Ancker and Williams.

The other example illustrated the type of duel that was able

to be analyzed by the MARKOV method but not by either of the

methods developed by Schoderbeck or Ancker and Williams.

EXAMPLE 1. pA = .6, PB = "5 XA.= 4 shots per minute

XB = 2 shots per minute, T = 0.

4.6 0 0 5 0 .5 0\f2. 2.

0 100 01 00 0 1 0 0

0 0 1i0 B 0 0 10 JAB

[0A 0 000 0 It 0 0 )

22



P = (1, 0, 0, 0)

4 al 2 bl

*A 1 a 2  B r b 2

L = L.C.M. (a 2 , b 2 ) = L.C.M, (1, 1) 1

LXA = 4, LX1 = 2

L* = L.C.M. (LXA, LXB) = L.C.M. (4, 2) = 4

60 L* (60) (4)
LA= A v 7 (4) -- 30 sec.

xB x
60 60

and B fired T( - (30)(2) _ 1 shoteO 60

j = [[ + i] = [0 + i] = 0

XA XB 4 2
N-1 = (-+ 9-) -1 = 30(6- +  ) -1 = 2

The number of PA matrices = (L*, - 1) = -1 =1

and the number of PB matrices (L- - 1) = , - 1 = 0

and there was one PAB matrix in the cycle.

Then,
* F.p j
A" = = po A = (i, 0, 0, 0) = (d1, .2, 3 a4)

= PA" PAB = .4 .6 0 .3 .2 .72 8.12

0 1 0 0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0

S0 0 0 i1 % 0 0 0 1 "0 0 0 1f

S+ n ,P *-,n

So as n + , using results found in Table II,

23



Pr (A alive; B dead) = a2 +
l-p1

= 0 + (1)(.72) .781-(.o8) = .

Ancker and Williams method yielded the following result:

Pr (A alive, B dead) = { A PA q[
-q A q~ B j=0A B

a 60 60 15 b 60 60 30
A 1B

a 15 15 3-0 2 T

Pr (A alive; B dead) { (.6). (.4)0'.5) 01-(.4 )2€(.5) ( 4) €

+ (.4) (.5)] = .78

EXAMPLE 2: PA = .2, PB = .8, XA = 5 shots per

minute,

x = 2 shots per minute, T = 0

.8 .2 0 0 .2 0 .8 0 .16 .04 .64 .16

PA = PB P =
0 0 10 0 0 10 0 0 1 0

0 001 0 00). 0 0 0

P0  (1, 0, o, 0)

5 a1  2 b1

A 1 a2 B F2

L = L.C.M. (1,1) = 1, L A = 5, L B = 2

L* = L.C.M. (5.2,) = 10

60 L* _ (60) (10) = 60 sec.
= -T ('i) (5')'(2)

A B

24



XA
In 60 seconds A fired T(&)) 60( ) = 5 shots, and

XB ;2,

-B fired TB( = 60 -- ) 2 shots
T - o =jL + 1] 0

IA IB 5 _2) -
N-i T T-+ 9=) - 1 = 60(- + 0 1 6

The number of PA matrices in a firing cycle =

- 10 - 1= 4, and
"(1) (2) -

the number of PB matrices -- 1) = ()

and there was one PAB matrix.

Then,

= PPAJ = - PA0 = (1, 0, 0, 0) = (a., 2 , a 4 )

p = PAPAPBPAPAPAB

and after doing this multiplication of matrices,

.013 .410 .564 .013

0 1 0 0

* =

0 0 1

0 0 0 1

.and as n + , using results from Table II.

Pr (A alive; B dead) a2 +

0 + (1)(.410) .415= o +1-.013

Ancker and Williams method yielded:

Pr (A alive; B dead) = .415

25



EXAVIPLE 3: PA 8' PB =A 4 shots per minute,

B 3 :hots per minute, T = 15 seconds.

.2 .8 0 0 .5 0 .5 0 . .4 .1 .4

o 101 0 0 (0 10 0P A =P B P =AB
0 0 10 00 10 0 0 0

0 001 100 0 1 0 0 0 1

P = (1, 0, 0, 0)

4 a 1  X b

a2 B2

L = L.C.M. (1, 1) = 1, LX A = 4 LXB = 3

L*= L.C.M. (4, 3) = 12

60 L* _ (60) (12) & useconds
LX A B (1) (4)(3)

X A' 4
In 60 seconds A fired T( -) = 60 (6-) = 4 shots, and

X B3
B fired T ) = 60 ( = 3 shots

[15+]
N- T . - 15.

N-i = ,.r+-)-1 = 4+3-1=6 I

The number of PA matrices in a firing cycle = ( -- 1)
'12

= 3

and the number of PB matrices =

L* 1) 12 -1 2

tA (1)(4)

and there was one PAB matrix. Then,

F 0.A] P A j (.2,, .8, 0, 0) 2

p*= PABPAPBPAPBPA
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This matrix multiplication yielded:

.0002 .4888 .1110 .4000

0 1 0 0
p*=

0 0 1 0

0 0 0 1

and as n + , again results were taken from Table II.

Pr (A alive, B dead) a + 12
2 1p

= .8 + (.2) (.4888) 8980. -l.0002- .90

D. CHARACTERISTICS OF THIS MODEL

The MARKOV chain analysis of the Stochastic Duel was only

another form of the conditional probability models presented

in Section I. However, the Markov chain model enabled the

analyst to consider duels where one side had a positive

time advantage with no restrictions on the length of the

time advantage. The model developed here allowed the anal-

ysis of duels involving different but fixed rates of fire by

the two combatants.

In contrast, Schoderbeck's model of the fixed firing rate

duel was restricted to a time advantage less than the time

period between two rounds from one combatant and further

restricted to the case where each combatant had the same

firing rate. Ancker --id Williams' development of the fixed

firing rate duel was restricted to the case where neithe;

combatant had a time adyiantage and both started firing simul-

taneouasy. Also their model only furnished results for the
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outcome probabilities in the limiting case after an infinite

number of exchanges. The Markov model yielded results for

the limiting case and the case after a finite number of

transition cycles, hence a finite number of rounds.

Another feature of this model was the ease in which it

could be computer programmed. Analysts could be interested

in the duel outcome probabilities if either or both combat-

ants had limited ammunition. For given firing rates the

number of transition cycles before one combatant's ammuni-

tion was exhausted could be computed. Then Pr (A alive;

B dead) could be determined at that point.

Possible extensions of this analysis along with uses of

the fixed firing rate stochastic duel are presented in Section

IV.
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III. TWO VERSUS ONE DUEL-FIXED RATES OF FIRE

A. DEVELOPIENT OF THE MODEL

In the model combatant A dueled with two other combat-

ants, B and C. The same assumptions as in the one-on-one

duel held, but here A was assumed to have two weapon systems

and fired at B with one and at C with the other.

Single shot kill probabilities, then were:

PAB = Pr (A killed B) (on one shot at B)

PAC = Pr (A killed C)

PBA = Pr (B killed A)

PCA = Pr (C killed A)

PBC = Pr (B killed C) = 0

PCB = Pr (C killed B) = 0

Firing rates were:

A = rate of A's fire at B (shots per minute)

xAC - rate of A's fire atC ( " "" )

A B = rate of B's fire atA ( " " " )

A = rate of C's fire at A ( " " " )

At any time in the process, then, the duel was in one of

eight possible states:

STATE 1: A alive; B alive; C alive

STATE 2: A alive; B alive; C dead

STATE 3: A alive; B dead; C alive

STATE 4: A alive; B dead; C dead

STATE 5: A dead; B alive; C alive
STATE 6: A dead; B alive; C dead

STATE 7: A dead; B dead; C alive

STATE 8: A dead; B dead; C dead

29



Transition matrices associated with the fifteen possible

occurrences that could cause a transition from one state to

another are presented below:

CASF 1: A fired at B

qAB 0 PAB 0 0 0 0 0

0 qAB 0 p 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

PAB 0 0 0 0 .1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1. 0

0 0 0 0 0 0 0 1/

CASE 2: A fired at C

qAC PAC 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 qAC PAC 0 0 0 0

0 0 0 1 0 0 0 0
PAC 0 0 0 0 10 0 0

0 0 0 0 01 0 0

0 0 0 0 00 1 0

0 0 0 0 00 0 1
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CASE 3: B fired at A

q BA 0 0 0 Pa 0 0 0
0 qBA 0 0 0 PBA 0 0

0 0 1 0 0 0 0 0

o 0 0 1 0 0 0 0
pBA = 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

o 0 0 0 0 1 0 0
o o o 0 0 0 0 0

o 0 0 0 0 0 0 0

CASE 4: C fired at A

qCA 0 0 0 PCA 0 0 0

0 1 0 0 0 0 0 0

0 0 qCA 0 0 0 PCA 0

0 0 0 1 0 0 0 0
pCA 0 0. 0 0 1 0 0 0

0 "0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

CASE 5: A fired at B; B fired at A

~AB BAI 0 [qA PBA3 0 [PAB PI3A] 0

o [qAB BB q , ' [AB PB O (PAB PBAJ

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

S0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0
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CASE 6: A fired at B; C fired at A

[qAB qCA 0 I PAB qc\ 0 EqAB PCAj 0 [PAB PCA 0

0 qAB 0 PAB 0 0 0 0

0 0 qCA 0 0 0 PCA 0

PABCA 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

CASE 7: A fired at C; B fired at A

(q ACqBI[AC q A 0 0 CSAC P3A [P~AC PBA3 0 0

0 qBA 0 0 0 PBA 0 0

.0 0 qAC PAC 0 0 0 0

D 0 0 1 0 0 0 0
PAC.BA 

=

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 1

CASE 8: A fired at C; C fired at A

qc cq cAAC C 0 0 [qACPCAI[PACPCAI 0 0

0 1 0 0 0 0 0 0

0 0 Co cqcj c ] 0 0 [cPcA cPcAI

PAC .CA 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0
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CASE 9: A fired at B; A fired at C

(qAB qAC) (qAB PAC) @pAB qAC PAB pA 0 0. 0 0 -

0 0 PAB 0 0 0 0

0 C AC 0 0 0 0

0 0 0 1 0 0 0
PAB'AC =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 00 1 0

0 0 0 0 0 00 1I
CASE 10: B fired at A; C fircd at A C

BA CA) 00 0 0 EPAC'*BPi'PA l 0
0 q 3A 0 0 0 PBA 0 0

0 0 qCA 0 0 0 PCA 0

pBAC - 0 0 000 0 0 0
pBA*CA 0

0 0 0 00 0 0 0

0 .0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
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In this model the initial state vector was:

P = 0, 0, 0, 0, 0, 0, 0)
0

It was further assumed here that A had time advantages

over both combatants B and C and that these time advantages

were equal. In order to proceed with the analysis, it was

then necessary to compute the number of times A fired at each

of the other combatants.

Let T = time advantage A had over B and C (in seconds).

Then, the number of times A fired at B in the interval .[0, TI

was determined as follows:

Set t ABjjB= t BA, or

60 •.6 -- g -) = T

AB

X ABTjH =6 +i1

Then, jB = [jB*] represented the number of times A fired at

B in the interval [0, T], where [.] was as defined in Section

II. Likewise jC = [jc*]=XACT + 1] represented the number

of times A fired at C in the interval [0,T].

Since by the nature of the matrices P AB and PAC' moulti-

plication of these two matrices in any order was commutative

so that A* = P AB. j Performing this matrix
0oA AC. jB

multiplication, it was seen that the form of Ph7 was:
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Q jB oqi 0 0 0 0 0

0 AB B  0 A0000

0 0 0 0000
1 0000

jAB 0 0 00 
0

0 0 0 0 1000

0 0 0 0 0100

0 0 0 0 0010

0- 0 0 0 0001.

Likewise the form of PAC was:

q j C  0 0 0 0 0 0

0 00 0 0 0 0 0

jC-jC
0 0 qAC C  0000t.-PACi=lqAC

jcPAC = 0 0 0 1 0 0 0 0

0 0 0 0 0100

0 0 0 0 0010

0 0 0 0001
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It followed that PAB jBP AC PAcC jAB B and was of the form:

B qAC AC ABqi-
Aq Bc q -ACi. AC jAB AC Bqlq1 lj

jB0 qAB 0
jc

jBp, jC=. 0 0q
PAB AC AC

o 0 0

o 0 0

o 0 0

o 0

S 0 0 0

(*pB i ]

1 0 0 0 0

o 1 0 0 0

[ 0 1 0 0

o 0 0 1 0

0 0 0 0 1
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and, then

= B jC jB iB*=(qABB q AC C  q AB B PACi lq ACi ' PAB qAC i~qABi-

jB i-i C  i-i
PAB PAC ijlqAB= q AC 1 0, 0, 0, 0)

i=l

= (al1 2 ,a3 ,a4, 01 0, 0, 0).

It followed from the derivation in Section II that the

firing sequence in the two-versus-one duel was also periodic.

The combination of the fifteen possible transition matrices

depended on the firing sequence, whiuh was again dependent

on XAB, XAC, XBA, XCA, and T. In any case the form of P*,

the matrix representing one firing cycle was of the form:

P* = Pj+.Pj+2...* Pj+M where j = jB + jC

Pll P12  P1 3  P14 P15 P16 P1 7 P1 8

0 P22  0 P24  0 P26  0 P28

= 0 0 P3 3 P 34  0 0 P3 7 P 3 8

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

o o 0 0 0 1 0 0

0 0 0 0 0 A) 1 0

0 0 0 0 0 0 0 1

After n of these transition cycles, then;
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n n 1 n-i] n -[p i n ] [Pl2i[iPll-1 IP22 [P13iil= i-p3ni

0P22 n  0

0 0 P 3 3

0 0 0
p n= 0 0 0

0 0 0
0 0 0

0 0 0
Col. 1 Col. 2 Col. 3

P1. i- [P1 5 ) 1  1 11
i= ll

+ p1 2 2Pj=o i= P

n-2J
+ P13P34 X 1 lpj

j=o P

n. i-in

ii=l

(P24 iP22 i 01

n

0

o 1

0 0

0 0

0 0
Col. 4 Col. 5

43

II



1i6 ~P I I lp 17 i lpl-

P2P26. Pa. P22  + 3P3 piI= j= =O i=O 11 P33
P26 _P 22 -0

o 3il P3 3 i.)

o 0

o 0o

a. 0

o a.

0 0
Col.. 6 Col. 7

p n

+ n.-2 i ii+ 12P28 I 1a. P22'j=0 i=O

+ P1 3p3 8 n 2 'ala. P33 -
j=0 ~
n

P2 lP 2 2 ]

Ip38 lP3

0

0

0 0/
Col. 8
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The probability that the duel was in any one of the eight

possible states after n transition cycles was taken from:

P.-n = p

= (Pr (STATE 1), Pr (STATE 2),..., Pr (STATE 8))

and the results of this multiplication is presented in Table

IV.

Then, utilizing the notation fcr *, i.e.

= (all a2' a3'.a4' 0, 0, 0, 0)

the state probabilities of the duel were computed as the

number of'transition cycles got very large (n-o). Table V

was then derived from Table IV.
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TABLE IV

DUEL STATE PROBABILITIES

Proailte After n Transition Cycles

Pr (STATE 1) qA B B q AC jC plL n'

jB jC n i-I n-i

Pr (STATE ) .2 ll 22

r PAC qAB3  P 2 2 i iAC

Pr (STATE 3) q B qAC P2 n i

P ' n jB  i-
+ AB qAC ]  13 ilAB

j13 n i-i f-

Pr (STATE 4) qB q C 3  P 1 1 p 33
+4AB AC [PAA'l

n-2 j i 3j-i
-0 i=i

+ PI 2P2j0 i 0llP2

n-i i
+ p1 3 P 3 4  iP 1 1 P 3 3 ]

j=O i=Q

jB jC i n

"- .jm i -l i-

P PABPAC iIAB ilAC

4 C i=1

I



TABLE -IV--Cont:inu2o

State After n Transition Cycles

Probabilities

Pr (STATE 5) qA j B qACj C  P lli- I

AB P15 pi

Pr (STATE 6) qA j B qcJC[ n l i - I

n-2 j-i
+ P1 2P92 6  0 i Pll P22

j=0

-AC AB P2 6i AC P22

Pr (STATE 7) q A j B  q C pc n- Pi 
- I -

P3P37 P P 3 3

j=0O

jC B n p3 i-1
+ PAB qACC  P37i~ q ABI  P 33i~

j n i-1

Pr (STATE 8) q ABj qAC [ p8iilli

n-2 Pilip2 j-i
+ P12 P18j0 j lP22 -

+ P3 P38 o J P1 1 P3 3 j-i

jC B i-! n i--

PACqA3 B P2i=IqA i~i22l

PAB qAC c P38.i_ q AB1 iP33
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TABLE V

DUEL STPATE PROBABIIITIES

State

Probabilities As n +

Pr (STATE 1) 0

Pr (STATE 2) 0

Pr (STATE 3) 0

Pr (STATE 4) a1914 c _- + lPl 3P34 P1 3

(1-_PL 2 ,) + (l-P 1 3 *)2.

+ 2 P2 4  + _3

"'P22 1-P 3 3  4

Pr (STATE 5)

_l___ ctlPI 2 P2 6 PI 2 * a2 P2 6
Pr (STATE G ia 1P16 + (2 + 221-- 11 (1l-P12 ) 21-R2 2 -

Pr (STATE 7) _P_ 1  + a+Pl3P3 7Pl 3  + _33

lP 11 (lPp13 *) 
2  1-P33

Pr (STATE 8) 118 + 2 + 3383

( I-P12* ( l-p 1 3 * )

+ 2P28 + 3 P 3 8

,- p m 3 3

Where P1 2* = max(pll, P2 2) and P1 3 * ax(pll, P3 3)

To see how the summations of the form

n i-i n-i n-2 1 ' k,

iiPll" P.Kk and j Pll ,kkk=2,3

converged see Appendix A.
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EXAMPLE:

Let pAB = .8, PAC = , PBA .6' PCA =.5

A = 4 shots per minute, -AC 2 shots per minuteAB A

A = 3 shots per minute, CA 2 shots per minuteIBA , -

and T 15 sec. The firing sequence is illustrated in Fig.

3.

15 15 15 15 15
A at B -. X-- - x x----X---x x

30 30 30
A at C .X X-

15 20 20 20 time
B atA -X -X -x X

30 
30

C at A X ?-'- -X

t=0

Figure 3. Firing Sequence

Then P0  (1, 0, 0, 0, 0, 0, 0t 0)

-- -AT -- -4)-1

XACT

jC = [-6-- + ] = [(2)(15) + ]60
~.~jB 1  jC -

A* C PAC - Fo'PAB PAC

= (.04, .16, .16, .64, 0, 0, 0, 0)

P* = 2+I*P2+2' P2+6

-P p p p P P
AB.BA.CA PAB.AC BA AB.CA BA AB.AC

Multiplying these matrices yielded:
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.000001 .000045 .003896 .171393 .161062 .004147 .659456 0

0 .000102 0 .388861 0 .131037 0 .48

0 0 .01 .44 0 0 .55 0

0 0 0 1 0 0 0 0
00=
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

Thus, at end of duel (as n-m-)

Pr (A alive; B dead; C dead) Pr (STATE 4)

alP1 4  'IP 1 2 P2 4 PI 2 * a 1 PI 3 P3 4 P1 3 * 12 P 2 4  C3 P 3 4.. .. ++ + +04
1-~ lP2)2(1-Pl 3* 2 -P22 1-P33 4

where P12* max (P l l ' P22) = .000102 and

P13 = max (P l l ' P3 3) = .01

Pr (STATE 4) .77758

f0
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IV. CONCLUSIONS AND RECO.WMENDATIONS

A. CONCLUSIONS

The development in this thesis of the fixed firing rate

Stochastic due]. was presented to serve as an analytical

tool in evaluating present or proposed weapon systems. The

use of Markov chains in the model enabled the analysis of

more complex but also more realistic weapon system engage-

ments than other models previously developed. The state

probabilities of the model in the limit as the number of

transition cycles increased were functions only of single

shot kill probabilities and hence easily computable and cor-

[ puter programmable. By computer programming this model,

parametric studies of firing rates, single shot kill prob--

abilities and time advantage could be performed. Also, if

the number of transition cycles was fixed as a function of

one combatant's limited ammunition supply, then state prob.-

abilities can be determined for the duel where ammunition is

limited.

The two-versus-one duel evolved utilizing the same tech-

nique as the fundamental duel analysis. Results were more

complex, however state probabilities still depended solely

on kill probabilities and time advantage. It was thought

that the two-versus-one duel would be extremely difficu.t to

develop as a conditional probability model, even without con-

sidering a time advantage.
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Stochastic dv' l s invol itg combatan:ts with fixed rates

of fire carn be of considerable importance in the evaluation"

of weapon systems. Using models developed by C. J. Ancker

and others, the fixed rate of fire duel can be compared to

the duel where time between firing is a random variable.

Analysis oC the random firing rate and fixed firing rate

models could yield the optimal firing doctrine for given

parameters. To do this, the mean values of the random fir-

ing rates should be set equal to the fixed firing rates in

the Markov chain model.

B. RECOMMENDATIONS

Further analysis into the fixed rate of fire stochastic

duel can consider the following areas:

1. Analysis of the duel considering properties inherent

to discrete parameter Markov chains found in Parzen [Ref. 41

and specifically investigating such properties as:

a. First passage probabilities and first passage

times.

b. Absorption probabilities and mean absorption

times.

c. Stationary distributions.

d. Limiting occupation times.

2. Analysis of the two-versus-one duel where the time[ advantage combatant A has over B and that which A has over

C are unequal.

3. The distribution of rounds fired in a stochastic duel

utilizing techniques of C. J. Ancker, Jr., and A. V. Gafarian

[Ref. 3].
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APPENDIX A

SOIE CONVERGENCIE PiPOOFS'

A-I. lim n i-I n-i
ill Pkk = 0; k = 2, 3; pl, p 1

PROOF: Let Pll > Pkk and sbstitutc p1 l for in

the expression above. This yields:

lim n n- _ lir n-inlC~~_ i fl 1 -ni nP

Applying L' Hospital's rule:
lira (rnnlir 1
n1 -n+i) n C II_ n -] = 0

Pu-
1-n1~+]I,

A-II. r *j=0 i= p ll  Pkk 2(lpk)2

k = 2, 3; Pl' Pkk < 1

where Pk* - max (Pll' Pkk )

PROOF: Substitute plk*"for P1 1 and Pkk in above

expression. This yields:

lin2 n-2
fl-coPk 

coP *j= 0 = n- j=0
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n-2 d

j=i

3dP1k j10P

lim d d 1p - 1 .

n-  PIk dplk* I  ik *

lira ( 1 -pk*) - (n-1) plk* ]- lplk* (-1)

n k(1 - Plk*)

lim Pk* Plk *
n- 2[) 2 [(n-2) ,n-2l( IP i* ( -Pk*Pk 2 (n1Plk ,n-2])

(lplk*)2 Plk

* (A-II-I)

but the second and third terms of Eq. A-II-1 went to zero in

the limit as n-) by the proof of A-I above.
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